IN THIS EDITION

What’s New

Success of New Wuhan Chemistry Facility
New Pilot Manufacturing Plant Opens in Jinshan
Expanded Bio-Derived Pharmaceutical Services
Translational Oncology Addresses World’s Fastest Growing Market
2011 Life Science and Chemistry Awards Presented

Collaboration Spotlight

BMS and WuXi: A Win-Win Collaboration
WuXi AppTec Collaborates with Merck to Identify Oncology Targets

Service Spotlight

Preclinical Development of Complex and Bio-Derived Pharmaceuticals
Genome Center: “Accelerating Science” at AACR
Nucleoside Chemistry Research Center

People

Vice President Promotions: Jingchao Dong, Ph.D. and Charles Ding, Ph.D.

Events: Meet WuXi AppTec

Pharmaceutical Services

Structural Biology
X-Ray Crystallography
High-Throughput Screening
Medicinal Chemistry
Synthetic Chemistry
Discovery Biology
Pharmacology
ADME - DMPK
Genome Center
Process R&D
Formulation
Analytical R&D
GMP Manufacturing
GLP Bioanalytical Services
Non-GLP and GLP Toxicology
What’s New

Success of New Wuhan Chemistry Facility Reflects WuXi’s Investment in People

WuXi AppTec officially opened its new chemistry site in Wuhan in February 2012. This site will provide WuXi’s long-established and highly respected synthetic chemistry services as well as integrated services such as medicinal chemistry. The initial staff consists of about 200 experienced chemists from our Tianjin and Shanghai sites, 60% with an MS degree or higher. As demand for WuXi’s chemistry services continues to grow, the staffing at Wuhan is expected to increase to 350 in 2012 and 1,000 within 5 years.

Wuhan, the capital of Hubei Province, is located in central China, about 520 miles from WuXi’s headquarters in Shanghai. A rapidly growing urban area, it has benefited from substantial government investment in infrastructure, including high-speed rail lines connecting it with Beijing, Shanghai and Guangzhou. It is considered the scientific center of central China, with 35 institutions of higher learning whose experienced professors educate more than one million students. Four high-tech zones have been established that support innovative companies like WuXi, whose operations are located in the East-Lake High-Tech Zone.

WuXi continually invests in the personal development of our scientists, knowing it is the cornerstone of our success and that of our clients. In Wuhan, the company’s human-resources programs include:

- **Management** — Senior managers from WuXi’s Shanghai facility relocated to the Wuhan site including Jingchao Dong, Ph.D. and Charles Ding, Ph.D., who were promoted to lead team development (see People section of WXPRESS)
- **Scientific training programs.** Group leaders from our Shanghai and Tianjin facilities have volunteered to spend one year in the Wuhan training center to ensure that protocols are transferred with the same attention to detail and customer care that has allowed WuXi to grow over the past decade.
- **Communication training programs.** Because communication between colleagues and with our clients is vitally important, we have tailored our hiring and training programs to emphasize communication.
- **Continuing education.** WuXi is implementing its well-respected lecture series for new employees to encourage continued learning. Similar programs in the Shanghai and Tianjin facilities have been instrumental in achieving high productivity and retention rates.
- **Recruitment of highly skilled personnel.** With such a large labor pool to draw from, WuXi can identify highly qualified and motivated scientists.

In only three months, the evidence of a successful transition has already been demonstrated. Several clients have expressed satisfaction with the value they are receiving from the talented and dedicated staff in Wuhan. One achievement of particular note is that the productivity indicators in synthetic and medicinal chemistry at Wuhan are outstanding using previously developed assessment standards.
A new pilot plant at WuXi AppTec’s manufacturing subsidiary Shanghai SynTheAll Pharmaceuticals Co. Ltd. (STA) in Jinshan is now operational. Designed in accordance with cGMP requirements, the multi-purpose facility adds flexible capabilities and more than doubles the capacity of the pilot plant for manufacture of pharmaceutical Intermediates and APIs.

The pilot plant’s flexibility allows WuXi to develop the most efficient manufacturing processes. It also makes it ideal for producing small and medium-sized quantities of GMP materials for preclinical and Phase I and Phase II clinical studies.

Features of the new facility include six production bays - with reactors ranging from 500 to 5,000 L and reaction temperatures ranging from -100° to 130° and separate areas for centrifuges, dryers, and weighing rooms.
WuXi’s strategic investment in our bio-derived/biologics platform is designed to offer a complete R&D service portfolio from discovery and development all the way to commercialization - around the world.

In the last two years WuXi has made significant additions to our biologics platform through expanded capabilities in Shanghai and a new manufacturing facility in Wuxi City, where speed and cost-competitive efficiency are maximized. Adding these to the long-established and respected capabilities of our Philadelphia site (formerly AppTec), we offer our clients a leading end-to-end, quality-based platform.

Along with our comprehensive R&D platform, WuXi provides global regulatory experience plus local manufacturing in China that arms our clients with unprecedented access to a fast-growing market. This access can foster a rapid proof of concept with low regulatory risk, which can lead to successful commercialization around the globe faster than traditional routes.

Shanghai-Based Services

Our 45,000 square-foot laboratory and non-GMP, 50-200L manufacturing facility in Shanghai is well equipped to provide complete discovery and development services:

- MAb Discovery
- Cell Line Engineering and Construction
- Bioprocess Development
- Analytical Development and Protein Characterization
- Manufacturing (non-GMP)

Wuxi City-Based Services

The newly constructed facility in Wuxi City complies with cGMP regulations, features 500L and 1000L bioreactors, and uses state-of-the-art disposable technologies. Build out of the 120,000 square-foot site is on schedule and the facility is expected to be fully operational by the second half of 2012, adding the following services to our expanded biologics platform:

- cGMP Drug Substance Manufacturing
- cGMP Cell Banking
- Stability Studies
- Formulation, Fill & Finish

To view the full portfolio of biologics services offered by our Shanghai, WuXi City and Philadelphia facilities, click [here](#).
WuXi’s Translational Oncology Department Targets Chinese Patients, the World’s Fastest Growing Market

WuXi AppTec’s integrated services show the value of Interdepartmental collaboration. Our oncology department, working directly with our Genome Center, has completed whole exome sequencing of 160 patient-derived tumors at 100X coverage and 42 with expression profiling using the Affymetrix U133 microarray platform. This information is compiled into a searchable database by our onsite bioinformatics group and is a key component of our translational research.

The tumor data is specific to patients from hospitals and clinics in China, a population that has historically been understudied. With the rising Chinese middle class and government initiatives to increase access to health care, the Chinese drug market could grow 22 percent a year, reaching $115 billion by 2015, according to IMS Health. In light of these advances, there is momentum to develop effective, personalized therapies for Chinese patients.

“Our clients have a keen interest in segmenting the Chinese population when developing new oncology drugs,” said Chi-Chung Chan, Ph.D., VP of Oncology at WuXi AppTec. “Building this genomic database and validating over 300 in vivo patient-derived xenograft models to test compounds is part of the solution to address this expanding patient base.”

The validated models are just one portion of the R&D support to clients provided by WuXi, which also includes a comprehensive set of translational research services. Combining our oncology and in vivo expertise with the Genome Center data analysis, WuXi provides services from high throughput discovery testing through preclinical cancer research.

Supporting translational research services include:

- Target validation with constitutive and inducible shRNA knockdown in cell culture and in xenograft
- Tumor tissue bank, many with matching adjacent non-tumor tissue
- Cancer stem cell platform
- Tumor analysis (IHC, histology, qPCR, MSD, Western, and more.)

Chi-Chung Chan, Ph.D.
Vice President of Biology, Head of Oncology

Dr. Chan has over 26 years of experience in pharmacology drug discovery. He earned his B.Sc. in Biology from the Chinese University of Hong Kong and his Ph.D. in Pharmacology from the University of Ottawa and completed a postdoctoral fellowship at the National Research Council of Canada. He served as Senior Investigator at Merck.
WuXi PharmaTech Presents the 2011 Life Science and Chemistry Awards

WuXi PharmaTech, the parent company of WuXi AppTec, announced the winners of the 2011 Life Science and Chemistry Awards at an award ceremony held on December 12, 2011, at the Diaoyutai State Guesthouse in Beijing.

The theme of the 2011 awards was Disease Biology.

WuXi founded the Life Science and Chemistry Awards in 2007 to reflect its commitment to encourage and support researchers in these fields and to highlight the importance of innovation and social responsibility in pharmaceutical research and development. They are among the most prestigious scientific awards in China and are approved by the Ministry of Science and Technology of China.

"My congratulations to all of the winners," said Dr. Ge Li, Chairman and Chief Executive Officer of WuXi PharmaTech. "Through talent and hard work, they are contributing to China's scientific development, and helping to build its promising future.

“With the Life Science and Chemistry Awards, we strive as a good corporate citizen to make another important contribution to the development of the life sciences in China. WuXi’s mission is to provide a platform that will allow anyone and any company to discover and develop drugs more efficiently and cost effectively for patients.
BMS and WuXi: A Win-Win Collaboration

The collaboration between Bristol-Myers Squibb (BMS) and WuXi in stability and analytical testing, officially initiated in 2011 at a new dedicated cGMP facility, is a clear example of a successful symbiotic relationship yielding value for both partners. The key to this successful collaboration lies in the explicit preparation and infrastructure that led to optimal operations and communication. Management teams built out the R&D needs and information exchange requirements well ahead of the initiation. Timely reporting and consistent updates keep the program moving at a rapid pace with high efficiency.

The facility in Shanghai is designed with stability chambers, a walk-in cool room, and photo-stability chambers. The analytical capabilities feature a robust portfolio of analytical instruments, including HPLC/UPLC, dissolution apparatus, LC/MS, GC, GC/MS, FTIR-NIR, Raman, analytical balance, KF titrators, disintegrators, LIMS, and a chromatographic data acquisition system.

Partnership Operations Staff

- The dedicated cGMP facility for analytical and stability testing officially began operation in 2011
- WuXi dedicated collaboration personnel includes analysts, pharmaceutical scientists, sample manager, and chamber manager
- Supplemental WuXi personnel includes QA associates and an administration assistant

WuXi AppTec values strategic collaborations with clients large and small and has a proven track record of success, demonstrating that talent, preparation, communication, and flexibility are cornerstones to successful partnerships.
Identification of Inhibitors to the Hedgehog Signaling Pathway

WuXi AppTec scientists Dr. Bin Hu and Dr. Hao Wu collaborated with scientists from Merck’s Research Laboratories in Rome in discovering new oncology drug targets. A paper published in the July 2011 issue of Bioorganic and Medicinal Chemistry Letters details the successful hit-to-lead approach taken by the collaborators.

The Hedgehog pathway has recently been linked to several cancers. Merck engaged high-throughput screening against their in-house small molecule collection to identify hit compounds that would direct the team to a novel and structurally distinct series of Smo antagonists.

In vitro profiling of the hits identified scaffolds of interest. The WuXi scientists applied their synthetic chemistry expertise to design synthetic routes for several series of novel leads based on these scaffolds, allowing fast, effective evaluation and rapid iterations.

The resulting potent optimized compounds should prove to be valuable in advancing understanding of the Hedgehog pathway and in development of potential cancer treatments.

Bioorganic & Medicinal Chemistry Letters 21 (2011) 5274–5282

Identification of a series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as potent smoothened antagonist hedgehog pathway inhibitors

Jesus M. Ontoria\(^a\), Laura Llauger Bufi\(^a\), Caterina Torrisi\(^a\), Alberto Bresciani\(^a\), Claudia Giomini\(^a\), Michael Rowley\(^a\), Sergio Serafini\(^a\), Hu Bin\(^b\), Wu Hao\(^b\), Christian Steinkühler\(^a\), Philip Jones\(^a*\)

\(^a\) IRBM, Merck Research Laboratories Rome, Via Pontina km 30,600, Pomezia, 00040 Rome, Italy
\(^b\) WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
Preclinical Development of Complex and Bio-Derived Pharmaceuticals

Guidance for preclinical safety assessment of biotechnology-derived pharmaceuticals was updated in June 2011 with the revised ICH S6 (R1) reaching Step 4. At WuXi AppTec our integrated service platform for biologics development includes extensive capabilities to meet the requirements of this guideline, in line with our goal to help our worldwide customers shorten the time and lower the cost of R&D through cost-effective and efficient outsourcing solutions.

Pre-Clinical Study Capabilities

WuXi has extensive experience in general toxicity studies of up to 6 months duration, in accordance with the requirements of the revised ICH guidance, including dosing via intravenous infusion in rodents and non-rodents. Supplemental studies, such as safety pharmacology, can be included in general toxicology study designs or as individual projects, depending on the nature of the test article. Full GLP-compliant analytical support is also available, including analytical and bioanalytical method development, and validation and assessment of a test compound's potential immunotoxic effects.

WuXi AppTec Services

Immunology Services

- TCR/Immunohistochemistry
- Immunochemistry
- Flow cytometry

Toxicology Services

Our preclinical studies for biologics are customized for each product and designed to generate meaningful results through the performance of a thorough scientific and regulatory-compliant program.

- FDA, OECD, SFDA Good Laboratory Practice (GLP) compliant
- Complete range of studies:
 - PK studies
 - Dose-range finding or MTD studies
 - Single dose (acute toxicity) studies
 - Repeat dose (sub-acute, sub-chronic and chronic) studies
Above is an example of a standard program for an IND submission for a biologic (administered intravenously for up to 1 month) to support clinical trials in the United States. Of course, each program is reviewed individually and modified to meet timelines based on a client’s requirements.

WuXi AppTec’s laboratories are equipped for in-house analyses of biologics and biomarkers. Robust toxicology designs are available for rapid safety assessment of biosimilars, minimizing the time to clinical trials.

Click [here](#) to download “Preclinical Development of Biologics” PDF
Contact: CS@wuxiapptec.com
WuXi AppTec’s Genome Center
“Accelerating Science” at AACR

Over 16,000 scientists and investigators attended the American Association for Cancer Research (AACR) Annual Meeting 2012 held March 31-April 4, 2012, in Chicago. This year’s meeting, with the theme “Accelerating Science: Concept to Clinic,” had a special focus on the translational progress in the study of basic cancer research.

Advances in technology that are making genome sequencing and data analysis faster, more reliable, and more affordable, even at the clinic level, are changing the way researchers approach discovery biology. In-depth data analysis of tumor genomes provides development targets for specific cancer mutations that are likely to lead to personalized medicine when they reach the clinic.

The WuXi AppTec Genome Center, founded in 2011, is staffed by highly experienced industry leaders with more than 10 years of experience developing and designing technologies and applications for the study of genomics in healthcare.

Leaders from the Genome Center presented two posters at the AACR Annual Meeting highlighting the value of integrating genomic sequencing in oncology drug discovery. The posters (both of which are presented here) demonstrate the potential of target identification and validation revealed by next generation sequencing (NGS) and deep sequencing.

Identification of somatic mutations in esophageal squamous cell carcinoma and corresponding xenograft by next-generation sequencing.

Douglas D. Fang, Yibo Gao, Qiang Xu, Hongye Sun, Bin Zhang, Zhaoli Chen, Chi-Chung Chan, Jie He

The genomes of all cancer cells carry somatic mutations, including both passenger and driver mutations. Driver mutations, which are implicated in oncogenesis, are most likely preserved in xenografted tumor cells in immunodeficient mice. Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive carcinomas in the gastrointestinal tract. It is prevalent in the developing world and associated with substantial morbidity and mortality. Molecular mechanisms contributing to initiation and progression of ESCC are still poorly understood. Systematic identification of genetic variations and putative driver mutations may lead to understanding of pathogenesis of the disease. In this study, using next-generation sequencing, we performed exome sequencing of eight paired Chinese esophageal squamous cell carcinoma and xenograft. Comparing with control genomes obtained from case-matched peripheral blood cells, we identified a wide variety of somatic variations in both primary and xenograft tumors, including TP53, RGMA, MUC4, TCEAL6, PRSS3, etc. Moreover, we found that mouse sequences accounted for a significant fraction of sequence reads from xenograft samples. Excluding these mouse sequences significantly improved the accuracy of mutation detection in xenograft samples. Overall, our findings shed light on important somatic mutations involved in ESCC. In addition, comparison between primary and xenograft tumors may lead to identification of driver mutations that confer growth advantage. These mutations represent therapeutic opportunities for development of targeted therapy.

Click here to download PDF of poster.
Deep sequencing of xenografts and case-matched blood and primary tumors reveals a 20-fold enrichment of loss of heterozygosity versus somatic mutations suggesting LOH plays an ever important role in tumorigenesis

Qiang Xu, Guan Wang, Douglas D. Fang, Yibo Gao, Yundi Chen, Lele Sun, Xuelan Yan, Ou Li, Quanyu Yang, Maoxiang Qian, Bin Zhang, Zhaoli Chen, Chi-Chung Chan, Hongye Sun, Jie He

The double hits theory suggests a major mechanism of tumorigenesis. However, compared to the somatic mutations, the loss of heterozygosity (LOH) was not frequently identified in many sequencing projects. Unlike the somatic mutations that were detected by the evidence of novel alleles in tumor tissue, the alleles involving in the LOH are present in normal tissues as well. Given the high level of tissue heterogeneity of primary tumors, including both tumorous cells and normal stromal cells, at whole tissue or million cells level, LOH can only be detected as a quantitative change between tumor and normal samples, which are not easily distinguished from potential sequencing errors or other artifacts especially with low depth sequencing. By applying whole exome capture deep sequencing on case-matched primary tumor, blood and xenograft samples, we found that xenografts represent a much purer human tumor cell population than primary tumor tissues. These tumor cells growing in mice not only contain the majority of somatic mutations in the primary tumors (>95%), but also reveal a >20-fold enrichment of somatic LOH events, which were not categorized as LOH in primary tumors, versus somatic mutations. All these findings were detected after removing mouse sequence contaminations, which if included will induce about half of the total variations observed in the xenograft samples. We found that these LOH events affect both tumor suppressor genes and oncogenes. Given that driver mutations or other variations that are implicated in oncogenesis are most likely preserved in xenografted tumor cells in immune deficient mice, we hypothesize that the bigger range of somatic LOH events that we observed in xenograft samples play a potential an even more important role in tumorigenesis than what we thought previously. Our finding also sheds a new light on a novel approach for the discovery of potential drug targets by sequencing xenograft samples.

Click here to download PDF of poster.

Hongye Sun, Ph.D.
Vice President of Operation and Technology Platform, and Chief Operation Officer, WuXi Genome Center

Dr. Sun has over 10 years of experience in DNA sequencing technology research and development. While at Applied Biosystems (now Life Technologies Corp.), he led a multi-disciplinary team to develop real-time single-molecule DNA sequencing technologies. He earned his Ph.D. from Peking University and was a postdoctoral fellow at Harvard University and the University of Kansas.
Nucleoside Chemistry Research Center

Nucleoside analogs have been effective in developing potential therapies for a variety of applications, including anti-infective therapies, chemotherapy, and treatments that feature immuno-modulation or regulation of gene expression.

WuXi’s Nucleoside Chemistry Research Center (NCRC) specializes in nucleoside compound synthesis, route design, purification, and characterization. With more than 10 years of nucleoside chemistry experience, our dedicated team of expert nucleoside chemists – over 60% of whom have advanced degrees – delivers high-purity, custom nucleosides in record time.

WuXi AppTec Nucleoside Strengths:

Sugar modifications –
- 2’, 3’ – deoxygenation, fluorination, methylation, alkylation
- 4’ – methylation, alkylation, azide substitution
- 5’ – side chain elongation, amino substitution, halogenation, phosphorylation

Base Modifications
- Regular A, U, G, C modifications
- C – linked bases

Activated monomer for nucleotide synthesis
- 3’- diisopropylphosphoramidite synthesis
- Exchanged with different bases

Phosphate synthesis
- 5’ – phosphoramidate, 3’, 5’ – cyclized phosphate
- 5’ – diphosphate, triphosphate
- Phosphate dimer, trimer

Effective Modification Strategies

Sugar and base modifications can contribute to the improvement of bioavailability and overall efficacy. Modification of the sugar and base components for the production of novel nucleoside analogs is one of WuXi’s strengths. We have extensive experience in techniques such as glycosylation, phosphorylation and fluorination. Sugar fluorination is a particularly important strategy for developing novel candidates that mimic the natural substrates.

The team also has expertise with synthesizing activated nucleotide monomers and phosphate building blocks. Nucleoside 5’-di and tri phosphates are important components to drug discovery but often difficult to synthesize. WuXi successfully synthesizes and purifies these and 3’-5’ cyclized phosphates with excellent results, providing tools for evaluating efficacy and tools in oligonucleotide synthesis.
Intelligent Route Design

Often the synthetic route for nucleoside analogs can be lengthy – sometimes over 20 steps – and can lead to purification issues resulting in a low yield. WuXi, in collaboration with clients, has experience in designing route modifications that increase the total yield and deliver material of higher purity (Fig 1). Evidence of the WuXi NCRC team’s competence is the completion of a complex synthesis (modified route) of over 15 steps (Fig 2) producing multi-gram quantities at high-purity levels and a 30-gram phosphate trimer synthesis with 12 steps delivered within four weeks.

Figure 1 The team has designed and optimized synthetic routes that increase yields and decrease time to delivery.

Figure 2 Complex synthesis projects
Service Spotlight

Nucleoside Chemistry Research Center

Figure 3 Additional examples of successful WuXi syntheses
(Structures abbreviated for IP considerations)

Equipment (partial list)

<table>
<thead>
<tr>
<th>Equipment</th>
<th>No. (set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR 400MHz</td>
<td>5</td>
</tr>
<tr>
<td>Prep-LC/MS (Waters)</td>
<td>16</td>
</tr>
<tr>
<td>Agilent LC/MS (DAD/ELSD/MS)</td>
<td>13</td>
</tr>
<tr>
<td>Shimadzu LC/MS (DAD/MS)</td>
<td>14</td>
</tr>
<tr>
<td>HPLC (DAD/ELSD/IRD)</td>
<td>20</td>
</tr>
<tr>
<td>TOF</td>
<td>1</td>
</tr>
<tr>
<td>GC/Agilent 7890 (FID/ECD/TCD/FPD)</td>
<td>1</td>
</tr>
<tr>
<td>GC/MS</td>
<td>2</td>
</tr>
<tr>
<td>Semi-Prep SFC (DAD/MS)</td>
<td>1</td>
</tr>
<tr>
<td>ContrAA 700</td>
<td>1</td>
</tr>
</tbody>
</table>
Efficient Delivery

WuXi has a stock of over 18,000 building blocks and a sophisticated reagent sourcing department that facilitates fast delivery and provides the added security of quality sources. This internal resource allows for scalability up to hundreds of grams, exceeding client timeline and purity requirements.

We have extensive expertise in route modification that decreases total synthesis time. Starting from basic literature or a client’s preliminary starting route, WuXi has designed shorter routes, utilized more easily available reagents, and decreased post-synthesis purification requirements. In addition to increasing development speed, these modifications also remove hurdles for later-stage synthesis if compounds move further along the pipeline.

Purification and Characterization

The NCRC team works with other departments at WuXi AppTec for prep-HPLC, MPLC, ion exchange, and crystallization/recrystallization if required. WuXi’s chiral separation capabilities enable fast and efficient purification of nucleoside molecules with chiral structures. In addition, the analytical R&D team can characterize the final product. Regular HNMR, FNMR and PHNMR are used in structural determination for nucleosides. The team has completed more than 30 projects for clients collaborating with WuXi’s Medicinal Chemistry and Discovery Biology groups.

Danny Wang, Ph.D.
Director of Chemistry

Dr. Wang has over 17 years of experience in organic chemistry, with extensive expertise in nucleoside chemistry, sugar chemistry, and heterocyclic chemistry. He earned his Ph.D. in Nucleoside Chemistry from Peking University. He has spent the last five years as head of WuXi AppTec’s Nucleoside Chemistry Research Center, managing more than 130 chemists and several project teams.
We Congratulate: Jingchao Dong, Ph.D. and Charles Z. Ding, Ph.D. on their Promotions to Vice President

Jingchao Dong, Ph.D. has been promoted to the VP of Synthetic Chemistry, responsible for the operations of Synthetic Chemistry at the Wuhan site. He will continue to report to Linus Lin, Ph.D., Vice President of Operation and Chemistry.

Dr. Dong received his Ph.D. degree in Medicinal Chemistry from Peking University. Dr. Dong joined WuXi in 2001 as one of the founding senior scientists. He has consistently demonstrated strong scientific and leadership skills. While managing a large FTE team for a key client, under his leadership his team delivered several milestones and, as a result, the collaboration has enjoyed continued expansion. In July 2011, Dr. Dong joined the newly formed Chemistry Service Unit, and quickly gained the trust of his new team. He established a weekly forum to allow his team to share experience and solve challenging problems in a timely manner. With the opening of the Wuhan site, Dr. Dong relocated to Wuhan to lead the overall chemistry effort of the Chemistry Service Unit in Wuhan starting May 2012.

Charles Z. Ding, Ph.D. has been promoted to Vice President of Medicinal Chemistry, responsible for the operations of Medicinal Chemistry in Wuhan site. He will continue to report to Shuhui Chen, Ph.D., Chief Scientific Officer.

Dr. Ding received his bachelor’s degree in Chemistry from Lanzhou University in 1983 and his Ph.D. in synthetic organic chemistry from the State University of New York at Buffalo in 1990. His postdoctoral training was at Northwestern University. He has more than 19 years of drug discovery and development experience as a medicinal chemist at Bristol-Myers Squibb, Cumbre Pharmaceuticals, and Anacor Pharmaceuticals. He invented or co-invented numerous molecules filed in Investigational New Drug applications in a wide range of therapeutic areas, including cardiovascular disease, oncology, metabolic disease and bacterial and viral infection. He has authored or co-authored more than 50 peer-reviewed publications and is named in more than 30 patents. His main objective at WuXi is to develop novel medicinal chemistry processes that will enable a highly productive medicinal chemistry organization to invent small-molecule therapeutics that address major unmet medical needs in anti-infectious disease, oncology, and other therapeutic areas.
Meet WuXi AppTec

Upcoming Events:

- Biotech Outsourcing Strategies, CMC Small Molecule and Biologics, Copenhagen, June 14th, 2012
- BIO International Convention, Boston, June 18-21, 2012
- Supercritical Fluid Chromatograph (SFC) Conference, Brussels Belgium, October 3-5, 2012
- American Association of Pharmaceutical Scientists (AAPS), Chicago, October 14-18, 2012
- CPhI / iCSE, Madrid Spain, October 9-11, 2012

Recent Events:

- Informex, New Orleans, February 14-17, 2012
- The Global Impact of the Transforming Economy in China - UCLA, Los Angeles, February 27th, 2012
 - Panelist: Richard Soll, Ph.D., Sr. Vice President of Integrated Services, WuXi AppTec
- American Association for Cancer Research (AACR) Annual Meeting, Chicago, March 31 – April 4, 2012
- Chinese-American BioMedical Association (CABA), Boston, April 6th, 2012
 - Speaker: Maxine Antoinette Rojas, Director of Business Development, Chemistry, WuXi AppTec
- BioTrinity - European Biopartnering and Investment Conference, Newbury, UK, April 24 -26, 2012
- Outsourcing Drug Discovery in China, Philadelphia, May 9-10, 2012
 - Panelist: Bill Farley, Director of Business Development, Discovery, WuXi AppTec

Learn more at: www.wuxiapptec.com
Subscribe: wxpress@wuxiapptec.com
Contact us: customer_service@wuxiapptec.com
Contact an Account Manager